Abstract:Monitoring behaviour in smart homes using sensors can offer insights into changes in the independent ability and long-term health of residents. Passive Infrared motion sensors (PIRs) are standard, however may not accurately track the full duration of movement. They also require line-of-sight to detect motion which can restrict performance and ensures they must be visible to residents. Channel State Information (CSI) is a low cost, unintrusive form of radio sensing which can monitor movement but also offers opportunities to generate rich data. We have developed a novel, self-calibrating motion detection system which uses CSI data collected and processed on a stock Raspberry Pi 4. This system exploits the correlation between CSI frames, on which we perform variance analysis using our algorithm to accurately measure the full period of a resident's movement. We demonstrate the effectiveness of this approach in several real-world environments. Experiments conducted demonstrate that activity start and end time can be accurately detected for motion examples of different intensities at different locations.
Abstract:An ambient sensor network is installed in Smart Homes to identify low-level events taking place by residents, which are then analysed to generate a profile of activities of daily living. These profiles are compared to both the resident's typical profile and to known "risky" profiles to support recommendation of evidence-based interventions. Maintaining trust presents an XAI challenge because the recommendations are not easily interpretable. Trust in the system can be improved by making the decision-making process more transparent. We propose a visualisation workflow which presents the data in clear, colour-coded graphs.