Monitoring behaviour in smart homes using sensors can offer insights into changes in the independent ability and long-term health of residents. Passive Infrared motion sensors (PIRs) are standard, however may not accurately track the full duration of movement. They also require line-of-sight to detect motion which can restrict performance and ensures they must be visible to residents. Channel State Information (CSI) is a low cost, unintrusive form of radio sensing which can monitor movement but also offers opportunities to generate rich data. We have developed a novel, self-calibrating motion detection system which uses CSI data collected and processed on a stock Raspberry Pi 4. This system exploits the correlation between CSI frames, on which we perform variance analysis using our algorithm to accurately measure the full period of a resident's movement. We demonstrate the effectiveness of this approach in several real-world environments. Experiments conducted demonstrate that activity start and end time can be accurately detected for motion examples of different intensities at different locations.