Abstract:Distributed microgrids are conventionally dependent on communication networks to achieve secondary control objectives. This dependence makes them vulnerable to stealth data integrity attacks (DIAs) where adversaries may perform manipulations via infected transmitters and repeaters to jeopardize stability. This paper presents a physics-guided, supervised Artificial Neural Network (ANN)-based framework that identifies communication-level cyberattacks in microgrids by analyzing whether incoming measurements will cause abnormal behavior of the secondary control layer. If abnormalities are detected, an iteration through possible spanning tree graph topologies that can be used to fulfill secondary control objectives is done. Then, a communication network topology that would not create secondary control abnormalities is identified and enforced for maximum stability. By altering the communication graph topology, the framework eliminates the dependence of the secondary control layer on inputs from compromised cyber devices helping it achieve resilience without instability. Several case studies are provided showcasing the robustness of the framework against False Data Injections and repeater-level Man-in-the-Middle attacks. To understand practical feasibility, robustness is also verified against larger microgrid sizes and in the presence of varying noise levels. Our findings indicate that performance can be affected when attempting scalability in the presence of noise. However, the framework operates robustly in low-noise settings.
Abstract:The Smart Grid (SG) is a critical energy infrastructure that collects real-time electricity usage data to forecast future energy demands using information and communication technologies (ICT). Due to growing concerns about data security and privacy in SGs, federated learning (FL) has emerged as a promising training framework. FL offers a balance between privacy, efficiency, and accuracy in SGs by enabling collaborative model training without sharing private data from IoT devices. In this survey, we thoroughly review recent advancements in designing FL-based SG systems across three stages: generation, transmission and distribution, and consumption. Additionally, we explore potential vulnerabilities that may arise when implementing FL in these stages. Finally, we discuss the gap between state-of-the-art FL research and its practical applications in SGs and propose future research directions. These focus on potential attack and defense strategies for FL-based SG systems and the need to build a robust FL-based SG infrastructure. Unlike traditional surveys that address security issues in centralized machine learning methods for SG systems, this survey specifically examines the applications and security concerns in FL-based SG systems for the first time. Our aim is to inspire further research into applications and improvements in the robustness of FL-based SG systems.