Abstract:Human actions are based on the mental perception of the environment. Even when all the aspects of an environment are not visible, humans have an internal mental model that can generalize the partially visible scenes to fully constructed and connected views. This internal mental model uses learned abstract representations of spatial and temporal aspects of the environments encountered in the past. Artificial agents in reinforcement learning environments also benefit by learning a representation of the environment from experience. It provides the agent with viewpoints that are not directly visible to it, helping it make better policy decisions. It can also be used to predict the future state of the environment. This project explores learning the top-down view of an RL environment based on the artificial agent's first-person view observations with a generative adversarial network(GAN). The top-down view is useful as it provides a complete overview of the environment by building a map of the entire environment. It provides information about the objects' dimensions and shapes along with their relative positions with one another. Initially, when only a partial observation of the environment is visible to the agent, only a partial top-down view is generated. As the agent explores the environment through a set of actions, the generated top-down view becomes complete. This generated top-down view can assist the agent in deducing better policy decisions. The focus of the project is to learn the top-down view of an RL environment. It doesn't deal with any Reinforcement Learning task.