Abstract:The instrumental variables (IVs) method is a leading empirical strategy for causal inference. Finding IVs is a heuristic and creative process, and justifying its validity (especially exclusion restrictions) is largely rhetorical. We propose using large language models (LLMs) to search for new IVs through narratives and counterfactual reasoning, similar to how a human researcher would. The stark difference, however, is that LLMs can accelerate this process exponentially and explore an extremely large search space. We demonstrate how to construct prompts to search for potentially valid IVs. We argue that multi-step prompting is useful and role-playing prompts are suitable for mimicking the endogenous decisions of economic agents. We apply our method to three well-known examples in economics: returns to schooling, production functions, and peer effects. We then extend our strategy to finding (i) control variables in regression and difference-in-differences and (ii) running variables in regression discontinuity designs.
Abstract:In this paper, we explore optimal treatment allocation policies that target distributional welfare. Most literature on treatment choice has considered utilitarian welfare based on the conditional average treatment effect (ATE). While average welfare is intuitive, it may yield undesirable allocations especially when individuals are heterogeneous (e.g., with outliers) - the very reason individualized treatments were introduced in the first place. This observation motivates us to propose an optimal policy that allocates the treatment based on the conditional \emph{quantile of individual treatment effects} (QoTE). Depending on the choice of the quantile probability, this criterion can accommodate a policymaker who is either prudent or negligent. The challenge of identifying the QoTE lies in its requirement for knowledge of the joint distribution of the counterfactual outcomes, which is generally hard to recover even with experimental data. Therefore, we introduce minimax optimal policies that are robust to model uncertainty. We then propose a range of identifying assumptions under which we can point or partially identify the QoTE. We establish the asymptotic bound on the regret of implementing the proposed policies. We consider both stochastic and deterministic rules. In simulations and two empirical applications, we compare optimal decisions based on the QoTE with decisions based on other criteria.
Abstract:Many differentiated products have key attributes that are unstructured and thus high-dimensional (e.g., design, text). Instead of treating unstructured attributes as unobservables in economic models, quantifying them can be important to answer interesting economic questions. To propose an analytical framework for this type of products, this paper considers one of the simplest design products -- fonts -- and investigates merger and product differentiation using an original dataset from the world's largest online marketplace for fonts. We quantify font shapes by constructing embeddings from a deep convolutional neural network. Each embedding maps a font's shape onto a low-dimensional vector. In the resulting product space, designers are assumed to engage in Hotelling-type spatial competition. From the image embeddings, we construct two alternative measures that capture the degree of design differentiation. We then study the causal effects of a merger on the merging firm's creative decisions using the constructed measures in a synthetic control method. We find that the merger causes the merging firm to increase the visual variety of font design. Notably, such effects are not captured when using traditional measures for product offerings (e.g., specifications and the number of products) constructed from structured data.