Abstract:The evolution of grammatical systems of syntactic and semantic composition is modeled here with a novel application of reinforcement learning theory. To test the functionalist thesis that speakers' expressive purposes shape their language, we include within the model a probability distribution over different messages that could be expressed in a given context. The proposed learning and production algorithm then breaks down language learning into a sequence of simple steps, such that each step benefits from the message probabilities. The results are presented in the form of numerical simulations of language histories and analytic proofs. The potential for applying these mathematical models to the study of natural language is illustrated with two case studies from the history of English.
Abstract:English allows for both compounds (e.g., London-made) and phrasal paraphrases (e.g., made in London). While these constructions have roughly the same truth-conditional meaning, we hypothesize that the compound allows less freedom to express the nature of the semantic relationship between the participle and the pre-participle nominal. We thus predict that the pre-participle slot is more constrained than the equivalent position in the phrasal construction. We test this prediction in a large corpus by measuring the entropy of corresponding nominal slots, conditional on the participle used. That is, we compare the entropy of $\alpha$ in compound construction slots like $\alpha$-[V]ed to the entropy of $\alpha$ in phrasal constructions like [V]ed by $\alpha$ for a given verb V. As predicted, there is significantly lower entropy in the compound construction than in the phrasal construction. We consider how these predictions follow from more general grammatical properties and processing factors.