Abstract:We propose a novel interpretable recurrent neural network (RNN) model, called ProtoryNet, in which we introduce a new concept of prototype trajectories. Motivated by the prototype theory in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence and feeding an RNN backbone with the proximity of each of the sentences to the prototypes. The RNN backbone then captures the temporal pattern of the prototypes, to which we refer as prototype trajectories. The prototype trajectories enable intuitive, fine-grained interpretation of how the model reached to the final prediction, resembling the process of how humans analyze paragraphs. Experiments conducted on multiple public data sets reveal that the proposed method not only is more interpretable but also is more accurate than the current state-of-the-art prototype-based method. Furthermore, we report a survey result indicating that human users find ProtoryNet more intuitive and easier to understand, compared to the other prototype-based methods.
Abstract:The sensitivity of heterogeneous energetic (HE) materials (propellants, explosives, and pyrotechnics) is critically dependent on their microstructure. Initiation of chemical reactions occurs at hot spots due to energy localization at sites of porosities and other defects. Emerging multi-scale predictive models of HE response to loads account for the physics at the meso-scale, i.e. at the scale of statistically representative clusters of particles and other features in the microstructure. Meso-scale physics is infused in machine-learned closure models informed by resolved meso-scale simulations. Since microstructures are stochastic, ensembles of meso-scale simulations are required to quantify hot spot ignition and growth and to develop models for microstructure-dependent energy deposition rates. We propose utilizing generative adversarial networks (GAN) to spawn ensembles of synthetic heterogeneous energetic material microstructures. The method generates qualitatively and quantitatively realistic microstructures by learning from images of HE microstructures. We show that the proposed GAN method also permits the generation of new morphologies, where the porosity distribution can be controlled and spatially manipulated. Such control paves the way for the design of novel microstructures to engineer HE materials for targeted performance in a materials-by-design framework.
Abstract:A new convolutional neural network (CNN) architecture for 2D driver/passenger pose estimation and seat belt detection is proposed in this paper. The new architecture is more nimble and thus more suitable for in-vehicle monitoring tasks compared to other generic pose estimation algorithms. The new architecture, named NADS-Net, utilizes the feature pyramid network (FPN) backbone with multiple detection heads to achieve the optimal performance for driver/passenger state detection tasks. The new architecture is validated on a new data set containing video clips of 100 drivers in 50 driving sessions that are collected for this study. The detection performance is analyzed under different demographic, appearance, and illumination conditions. The results presented in this paper may provide meaningful insights for the autonomous driving research community and automotive industry for future algorithm development and data collection.