Abstract:Image generation using generative AI is rapidly becoming a major new source of visual media, with billions of AI generated images created using diffusion models such as Stable Diffusion and Midjourney over the last few years. In this paper we collect and analyse over 3 million prompts and the images they generate. Using natural language processing, topic analysis and visualisation methods we aim to understand collectively how people are using text prompts, the impact of these systems on artists, and more broadly on the visual cultures they promote. Our study shows that prompting focuses largely on surface aesthetics, reinforcing cultural norms, popular conventional representations and imagery. We also find that many users focus on popular topics (such as making colouring books, fantasy art, or Christmas cards), suggesting that the dominant use for the systems analysed is recreational rather than artistic.
Abstract:In creative design, where aesthetics play a crucial role in determining the quality of outcomes, there are often multiple worthwhile possibilities, rather than a single ``best'' design. This challenge is compounded in the use of computational generative systems, where the sheer number of potential outcomes can be overwhelming. This paper introduces a method that combines evolutionary optimisation with AI-based image classification to perform quality-diversity search, allowing for the creative exploration of complex design spaces. The process begins by randomly sampling the genotype space, followed by mapping the generated phenotypes to a reduced representation of the solution space, as well as evaluating them based on their visual characteristics. This results in an elite group of diverse outcomes that span the solution space. The elite is then progressively updated via sampling and simple mutation. We tested our method on a generative system that produces abstract drawings. The results demonstrate that the system can effectively evolve populations of phenotypes with high aesthetic value and greater visual diversity compared to traditional optimisation-focused evolutionary approaches.
Abstract:In recent years Generative Machine Learning systems have advanced significantly. A current wave of generative systems use text prompts to create complex imagery, video, even 3D datasets. The creators of these systems claim a revolution in bringing creativity and art to anyone who can type a prompt. In this position paper, we question the basis for these claims, dividing our analysis into three areas: the limitations of linguistic descriptions, implications of the dataset, and lastly, matters of materiality and embodiment. We conclude with an analysis of the creative possibilities enabled by prompt-based systems, asking if they can be considered a new artistic medium.