Abstract:An algorithmic framework to compute sparse or minimal-TV solutions of linear systems is proposed. The framework includes both the Kaczmarz method and the linearized Bregman method as special cases and also several new methods such as a sparse Kaczmarz solver. The algorithmic framework has a variety of applications and is especially useful for problems in which the linear measurements are slow and expensive to obtain. We present examples for online compressed sensing, TV tomographic reconstruction and radio interferometry.
Abstract:The linearized Bregman method is a method to calculate sparse solutions to systems of linear equations. We formulate this problem as a split feasibility problem, propose an algorithmic framework based on Bregman projections and prove a general convergence result for this framework. Convergence of the linearized Bregman method will be obtained as a special case. Our approach also allows for several generalizations such as other objective functions, incremental iterations, incorporation of non-gaussian noise models or box constraints.