Abstract:This paper presents a new hybrid model for predicting German electricity prices. The algorithm is based on combining Gaussian Process Regression (GPR) and Support Vector Regression (SVR). While GPR is a competent model for learning the stochastic pattern within the data and interpolation, its performance for out-of-sample data is not very promising. By choosing a suitable data-dependent covariance function, we can enhance the performance of GPR for the tested German hourly power prices. However, since the out-of-sample prediction depends on the training data, the prediction is vulnerable to noise and outliers. To overcome this issue, a separate prediction is made using SVR, which applies margin-based optimization, having an advantage in dealing with non-linear processes and outliers, since only certain necessary points (support vectors) in the training data are responsible for regression. Both individual predictions are later combined using the performance-based weight assignment method. A test on historic German power prices shows that this approach outperforms its chosen benchmarks such as the autoregressive exogenous model, the naive approach, as well as the long short-term memory approach of prediction.
Abstract:Reliable gas price forecasts are an essential information for gas and energy traders, for risk managers and also economists. However, ahead of the war in Ukraine Europe began to suffer from substantially increased and volatile gas prices which culminated in the aftermath of the North Stream 1 explosion. This shock changed both trend and volatility structure of the prices and has considerable effects on forecasting models. In this study we investigate whether modern machine learning methods such as neural networks are more resilient against such changes than statistical models such as autoregressive moving average (ARMA) models with conditional heteroskedasticity, or copula-based time series models. Thereby the focus lies on interval forecasting and applying respective evaluation measures. As data, the Front Month prices from the Dutch Title Transfer Facility, currently the predominant European exchange, are used. We see that, during the shock period, most models underestimate the variance while overestimating the variance in the after-shock period. Furthermore, we recognize that, during the shock, the simpler models, i.e. an ARMA model with conditional heteroskedasticity and the multilayer perceptron (a neural network), perform best with regards to prediction interval coverage. Interestingly, the widely-used long-short term neural network is outperformed by its competitors.