Abstract:To validate the second-by-second dynamics of turbines in field experiments, it is necessary to accurately reconstruct the winds going into the turbine. Current time-resolved inflow reconstruction techniques estimate wind behavior in unobserved regions using relatively simple spectral-based models of the atmosphere. Here, we develop a technique for time-resolved inflow reconstruction that is rooted in a large-eddy simulation model of the atmosphere. Our "large-eddy reconstruction" technique blends observations and atmospheric model information through a diffusion model machine learning algorithm, allowing us to generate probabilistic ensembles of reconstructions for a single 10-min observational period. Our generated inflows can be used directly by aeroelastic codes or as inflow boundary conditions in a large-eddy simulation. We verify the second-by-second reconstruction capability of our technique in three synthetic field campaigns, finding positive Pearson correlation coefficient values (0.20>r>0.85) between ground-truth and reconstructed streamwise velocity, as well as smaller positive correlation coefficient values for unobserved fields (spanwise velocity, vertical velocity, and temperature). We validate our technique in three real-world case studies by driving large-eddy simulations with reconstructed inflows and comparing to independent inflow measurements. The reconstructions are visually similar to measurements, follow desired power spectra properties, and track second-by-second behavior (0.25 > r > 0.75).
Abstract:Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions, and the interaction between wakes. Physics-based models that capture the wake flow-field with high-fidelity are computationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced order models can represent an efficient alternative for simulating wind farms. In this work, we use real-world light detection and ranging (LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning. Specifically, we first demonstrate the use of deep autoencoders to find a low-dimensional \emph{latent} space that gives a computationally tractable approximation of the wake LiDAR measurements. Then, we learn the mapping between the parameter space and the (latent space) wake flow-fields using a deep neural network. Additionally, we also demonstrate the use of a probabilistic machine learning technique, namely, Gaussian process modeling, to learn the parameter-space-latent-space mapping in addition to the epistemic and aleatoric uncertainty in the data. Finally, to cope with training large datasets, we demonstrate the use of variational Gaussian process models that provide a tractable alternative to the conventional Gaussian process models for large datasets. Furthermore, we introduce the use of active learning to adaptively build and improve a conventional Gaussian process model predictive capability. Overall, we find that our approach provides accurate approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those generated with high-fidelity physics-based simulations.