Abstract:In the field of health-care and bio-medical research, understanding the relationship between the symptoms of diseases is crucial for early diagnosis and determining hidden relationships between diseases. The study aimed to understand the extent of symptom types in disease prediction tasks. In this research, we analyze a pre-generated symptom-based human disease dataset and demonstrate the degree of predictability for each disease based on the Convolutional Neural Network and the Support Vector Machine. Ambiguity of disease is studied using the K-Means and the Principal Component Analysis. Our results indicate that machine learning can potentially diagnose diseases with the 98-100% accuracy in the early stage, taking the characteristics of symptoms into account. Our result highlights that types of unusual symptoms are a good proxy for disease early identification accurately. We also highlight that unusual symptoms increase the accuracy of the disease prediction task.
Abstract:A large amount of feedback was collected over the years. Many feedback analysis models have been developed focusing on the English language. Recognizing the concept of feedback is challenging and crucial in languages which do not have applicable corpus and tools employed in Natural Language Processing (i.e., vocabulary corpus, sentence structure rules, etc). However, in this paper, we study a feedback classification in Mongolian language using two different word embeddings for deep learning. We compare the results of proposed approaches. We use feedback data in Cyrillic collected from 2012-2018. The result indicates that word embeddings using their own dataset improve the deep learning based proposed model with the best accuracy of 80.1% and 82.7% for two classification tasks.