Abstract:One-class classification (OCC) deals with the classification problem in which the training data has data points belonging to target class only. In this paper, we present a one-class classification algorithm; One-Class Classification by Ensembles of Regression models (OCCER) that uses regression methods to address OCC problems. The OCCEM algorithm coverts a OCC problem into many regression problems in the original feature space such that each feature of the original feature space is used as the target variable in one of the regression problems. Other features are used as the variables on which the dependent variable is depend upon. The errors of regression of a data point by all the regression models are used to compute the outlier score of the data point. An extensive comparison of the OCCER to the state-of-the-art OCC algorithms on several datasets was carried out to show the effectiveness of the proposed approach. We also show that OCCER algorithm can work well with the latent feature space created by autoencoders for image datasets. The implementation of OCCER is available at https://github.com/srikanthBezawada/OCCER.