Abstract:Speaker identification systems are deployed in diverse environments, often different from the lab conditions on which they are trained and tested. In this paper, first, we show the problem of generalization using fixed thresholds computed using the equal error rate metric. Secondly, we introduce a novel and generalizable speaker-specific thresholding technique for robust imposter identification in unseen speaker identification. We propose a speaker-specific adaptive threshold, which can be computed using the enrollment audio samples, for identifying imposters in unseen speaker identification. Furthermore, we show the efficacy of the proposed technique on VoxCeleb1, VCTK and the FFSVC 2022 datasets, beating the baseline fixed thresholding by up to 25%. Finally, we exhibit that the proposed algorithm is also generalizable, demonstrating its performance on ResNet50, ECAPA-TDNN and RawNet3 speaker encoders.
Abstract:Speaker identification systems in a real-world scenario are tasked to identify a speaker amongst a set of enrolled speakers given just a few samples for each enrolled speaker. This paper demonstrates the effectiveness of meta-learning and relation networks for this use case. We propose improved relation networks for speaker verification and few-shot (unseen) speaker identification. The use of relation networks facilitates joint training of the frontend speaker encoder and the backend model. Inspired by the use of prototypical networks in speaker verification and to increase the discriminability of the speaker embeddings, we train the model to classify samples in the current episode amongst all speakers present in the training set. Furthermore, we propose a new training regime for faster model convergence by extracting more information from a given meta-learning episode with negligible extra computation. We evaluate the proposed techniques on VoxCeleb, SITW and VCTK datasets on the tasks of speaker verification and unseen speaker identification. The proposed approach outperforms the existing approaches consistently on both tasks.