Abstract:This paper presents a study regarding group behavior in a controlled experiment focused on differences in an important attribute that vary across cultures -- the personal spaces -- in two Countries: Brazil and Germany. In order to coherently compare Germany and Brazil evolutions with same population applying same task, we performed the pedestrian Fundamental Diagram experiment in Brazil, as performed in Germany. We use CNNs to detect and track people in video sequences. With this data, we use Voronoi Diagrams to find out the neighbor relation among people and then compute the walking distances to find out the personal spaces. Based on personal spaces analyses, we found out that people behavior is more similar, in terms of their behaviours, in high dense populations and vary more in low and medium densities. So, we focused our study on cultural differences between the two Countries in low and medium densities. Results indicate that personal space analyses can be a relevant feature in order to understand cultural aspects in video sequences. In addition to the cultural differences, we also investigate the personality model in crowds, using OCEAN. We also proposed a way to simulate the FD experiment from other countries using the OCEAN psychological traits model as input. The simulated countries were consistent with the literature.
Abstract:Virtual Human Simulation has been widely used for different purposes, such as comfort or accessibility analysis. In this paper, we investigate the possibility of using this type of technique to extend the training datasets of pedestrians to be used with machine learning techniques. Our main goal is to verify if Computer Graphics (CG) images of virtual humans with a simplistic rendering can be efficient in order to augment datasets used for training machine learning methods. In fact, from a machine learning point of view, there is a need to collect and label large datasets for ground truth, which sometimes demands manual annotation. In addition, find out images and videos with real people and also provide ground truth of people detection and counting is not trivial. If CG images, which can have a ground truth automatically generated, can also be used as training in machine learning techniques for pedestrian detection and counting, it can certainly facilitate and optimize the whole process of event detection. In particular, we propose to parametrize virtual humans using a data-driven approach. Results demonstrated that using the extended datasets with CG images outperforms the results when compared to only real images sequences.