Abstract:As a special type of transformer, Vision Transformers (ViTs) are used to various computer vision applications (CV), such as image recognition. There are several potential problems with convolutional neural networks (CNNs) that can be solved with ViTs. For image coding tasks like compression, super-resolution, segmentation, and denoising, different variants of the ViTs are used. The purpose of this survey is to present the first application of ViTs in CV. The survey is the first of its kind on ViTs for CVs to the best of our knowledge. In the first step, we classify different CV applications where ViTs are applicable. CV applications include image classification, object detection, image segmentation, image compression, image super-resolution, image denoising, and anomaly detection. Our next step is to review the state-of-the-art in each category and list the available models. Following that, we present a detailed analysis and comparison of each model and list its pros and cons. After that, we present our insights and lessons learned for each category. Moreover, we discuss several open research challenges and future research directions.
Abstract:In the realm of image processing and computer vision (CV), machine learning (ML) architectures are widely applied. Convolutional neural networks (CNNs) solve a wide range of image processing issues and can solve image compression problem. Compression of images is necessary due to bandwidth and memory constraints. Helpful, redundant, and irrelevant information are three different forms of information found in images. This paper aims to survey recent techniques utilizing mostly lossy image compression using ML architectures including different auto-encoders (AEs) such as convolutional auto-encoders (CAEs), variational auto-encoders (VAEs), and AEs with hyper-prior models, recurrent neural networks (RNNs), CNNs, generative adversarial networks (GANs), principal component analysis (PCA) and fuzzy means clustering. We divide all of the algorithms into several groups based on architecture. We cover still image compression in this survey. Various discoveries for the researchers are emphasized and possible future directions for researchers. The open research problems such as out of memory (OOM), striped region distortion (SRD), aliasing, and compatibility of the frameworks with central processing unit (CPU) and graphics processing unit (GPU) simultaneously are explained. The majority of the publications in the compression domain surveyed are from the previous five years and use a variety of approaches.