Abstract:In this paper, we study the Nystr{\"o}m type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nystr{\"o}m type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general source condition in vector-valued function setting, therefore the results can also be applied to multi-task learning problems. We achieve the optimal minimax convergence rates of multi-penalty regularization using the concept of effective dimension for the appropriate subsampling size. We discuss an aggregation approach based on linear function strategy to combine various Nystr{\"o}m approximants. Finally, we demonstrate the performance of multi-penalty regularization based on Nystr{\"o}m type subsampling on Caltech-101 data set for multi-class image classification and NSL-KDD benchmark data set for intrusion detection problem.
Abstract:We consider the learning algorithms under general source condition with the polynomial decay of the eigenvalues of the integral operator in vector-valued function setting. We discuss the upper convergence rates of Tikhonov regularizer under general source condition corresponding to increasing monotone index function. The convergence issues are studied for general regularization schemes by using the concept of operator monotone index functions in minimax setting. Further we also address the minimum possible error for any learning algorithm.