Abstract:In this paper, we explore the use of channel state information (CSI) from a WiFi system to estimate the breathing rate of a person in a room. In order to extract WiFi CSI components that are sensitive to breathing, we propose to consider the delay domain channel impulse response (CIR), while most state-of-the-art methods consider its frequency domain representation. One obstacle while processing the CSI data is that its amplitude and phase are highly distorted by measurement uncertainties. We thus also propose an amplitude calibration method and a phase offset calibration method for CSI measured in orthogonal frequency-division multiplexing (OFDM) multiple-input multiple-output (MIMO) systems. Finally, we implement a complete breathing rate estimation system in order to showcase the effectiveness of our proposed calibration and CSI extraction methods.
Abstract:Learning-based algorithms have gained great popularity in communications since they often outperform even carefully engineered solutions by learning from training samples. In this paper, we show that the selection of appropriate training examples can be important for the performance of such learning-based algorithms. In particular, we consider non-linear 1-bit precoding for massive multi-user MIMO systems using the C2PO algorithm. While previous works have already shown the advantages of learning critical coefficients of this algorithm, we demonstrate that straightforward selection of training samples that follow the channel model distribution does not necessarily lead to the best result. Instead, we provide a strategy to generate training data based on the specific properties of the algorithm, which significantly improves its error floor performance.
Abstract:The channel impulse response (CIR) obtained from the channel estimation step of various wireless systems is a widely used source of information in wireless sensing. Breathing rate is one of the important vital signs that can be retrieved from the CIR. Recently, there have been various works that extract the breathing rate from one carefully selected CIR delay bin that contains the breathing information. However, it has also been shown that the accuracy of this estimation is very sensitive to the measurement scenario, e.g., if there is any obstacle between the transceivers and the target, the position of the target, and the orientation of the target, since only one CIR delay bin does not contain a sufficient periodic component to retrieve the breathing rate. We focus on such scenarios and propose a CIR delay bin fusion method to merge several CIR bins to achieve a more accurate and reliable breathing rate estimate. We take measurements and showcase the advantages of the proposed method across scenarios.
Abstract:Ultra-wideband (UWB) devices are widely used in indoor localization scenarios. Single-anchor UWB localization shows advantages because of its simple system setup compared to conventional two-way ranging (TWR) and trilateration localization methods. In this work, we focus on single-anchor UWB localization methods that learn statistical features of the channel impulse response (CIR) in different location areas using a Gaussian mixture model (GMM). We show that by learning the joint distributions of the amplitudes of different delay components, we achieve a more accurate location estimate compared to considering each delay bin independently. Moreover, we develop a similarity metric between sets of CIRs. With this set-based similarity metric, we can further improve the estimation performance, compared to treating each snapshot separately. We showcase the advantages of the proposed methods in multiple application scenarios.