Abstract:The extraction of information from semi-structured text, such as resumes, has long been a challenge due to the diverse formatting styles and subjective content organization. Conventional solutions rely on specialized logic tailored for specific use cases. However, we propose a revolutionary approach leveraging structured Graphs, Natural Language Processing (NLP), and Deep Learning. By abstracting intricate logic into Graph structures, we transform raw data into a comprehensive Knowledge Graph. This innovative framework enables precise information extraction and sophisticated querying. We systematically construct dictionaries assigning skill weights, paving the way for nuanced talent analysis. Our system not only benefits job recruiters and curriculum designers but also empowers job seekers with targeted query-based filtering and ranking capabilities.
Abstract:Emojis are being frequently used in todays digital world to express from simple to complex thoughts more than ever before. Hence, they are also being used in sentiment analysis and targeted marketing campaigns. In this work, we performed sentiment analysis of Tweets as well as on emoji dataset from the Kaggle. Since tweets are sentences we have used Universal Sentence Encoder (USE) and Sentence Bidirectional Encoder Representations from Transformers (SBERT) end-to-end sentence embedding models to generate the embeddings which are used to train the Standard fully connected Neural Networks (NN), and LSTM NN models. We observe the text classification accuracy was almost the same for both the models around 98 percent. On the contrary, when the validation set was built using emojis that were not present in the training set then the accuracy of both the models reduced drastically to 70 percent. In addition, the models were also trained using the distributed training approach instead of a traditional singlethreaded model for better scalability. Using the distributed training approach, we were able to reduce the run-time by roughly 15% without compromising on accuracy. Finally, as part of explainable AI the Shap algorithm was used to explain the model behaviour and check for model biases for the given feature set.