Abstract:Data-driven closures correct the standard reduced order models (ROMs) to increase their accuracy in under-resolved, convection-dominated flows. There are two types of data-driven ROM closures in current use: (i) structural, with simple ansatzes (e.g., linear or quadratic); and (ii) machine learning-based, with neural network ansatzes. We propose a novel symbolic regression (SR) data-driven ROM closure strategy, which combines the advantages of current approaches and eliminates their drawbacks. As a result, the new data-driven SR closures yield ROMs that are interpretable, parsimonious, accurate, generalizable, and robust. To compare the data-driven SR-ROM closures with the structural and machine learning-based ROM closures, we consider the data-driven variational multiscale ROM framework and two under-resolved, convection-dominated test problems: the flow past a cylinder and the lid-driven cavity flow at Reynolds numbers Re = 10000, 15000, and 20000. This numerical investigation shows that the new data-driven SR-ROM closures yield more accurate and robust ROMs than the structural and machine learning ROM closures.
Abstract:Computational modeling is a key resource to gather insight into physical systems in modern scientific research and engineering. While access to large amount of data has fueled the use of Machine Learning (ML) to recover physical models from experiments and increase the accuracy of physical simulations, purely data-driven models have limited generalization and interpretability. To overcome these limitations, we propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models starting from experimental data. Since these models consist of mathematical expressions, they are interpretable and amenable to analysis, and the use of a natural, general-purpose discrete mathematical language for physics favors generalization with limited input data. Importantly, DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems. Further, we show that DEC allows to implement a strongly-typed SR procedure that guarantees the mathematical consistency of the recovered models and reduces the search space of symbolic expressions. Finally, we prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data: Poisson equation, the Euler's Elastica and the equations of Linear Elasticity. Thanks to their general-purpose nature, the methods developed in this paper may be applied to diverse contexts of physical modeling.