Abstract:In the last ten years, the average annual growth rate of nonwoven production was 4%. In 2020 and 2021, nonwoven production has increased even further due to the huge demand for nonwoven products needed for protective clothing such as FFP2 masks to combat the COVID19 pandemic. Optimizing the production process is still a challenge due to its high nonlinearity. In this paper, we present a machine learning-based optimization workflow aimed at improving the homogeneity of spunbond nonwovens. The optimization workflow is based on a mathematical model that simulates the microstructures of nonwovens. Based on trainingy data coming from this simulator, different machine learning algorithms are trained in order to find a surrogate model for the time-consuming simulator. Human validation is employed to verify the outputs of machine learning algorithms by assessing the aesthetics of the nonwovens. We include scientific and expert knowledge into the training data to reduce the computational costs involved in the optimization process. We demonstrate the necessity and effectiveness of our workflow in optimizing the homogeneity of nonwovens.
Abstract:Meshfree simulation methods are emerging as compelling alternatives to conventional mesh-based approaches, particularly in the fields of Computational Fluid Dynamics (CFD) and continuum mechanics. In this publication, we provide a comprehensive overview of our research combining Machine Learning (ML) and Fraunhofer's MESHFREE software (www.meshfree.eu), a powerful tool utilizing a numerical point cloud in a Generalized Finite Difference Method (GFDM). This tool enables the effective handling of complex flow domains, moving geometries, and free surfaces, while allowing users to finely tune local refinement and quality parameters for an optimal balance between computation time and results accuracy. However, manually determining the optimal parameter combination poses challenges, especially for less experienced users. We introduce a novel ML-optimized approach, using active learning, regression trees, and visualization on MESHFREE simulation data, demonstrating the impact of input combinations on results quality and computation time. This research contributes valuable insights into parameter optimization in meshfree simulations, enhancing accessibility and usability for a broader user base in scientific and engineering applications.
Abstract:We present a simulation framework for spunbond processes and use a design of experiments to investigate the cause-and-effect-relations of process and material parameters onto the fiber laydown on a conveyor belt. The virtual experiments are analyzed by a blocked neural network. This forms the basis for the prediction of the fiber laydown characteristics and enables a quick ranking of the significance of the influencing effects. We conclude our research by an analysis of the nonlinear cause-and-effect relations.