Abstract:Individuals with visual impairments often face a multitude of challenging obstacles in their daily lives. Vision impairment can severely impair a person's ability to work, navigate, and retain independence. This can result in educational limits, a higher risk of accidents, and a plethora of other issues. To address these challenges, we present MagicEye, a state-of-the-art intelligent wearable device designed to assist visually impaired individuals. MagicEye employs a custom-trained CNN-based object detection model, capable of recognizing a wide range of indoor and outdoor objects frequently encountered in daily life. With a total of 35 classes, the neural network employed by MagicEye has been specifically designed to achieve high levels of efficiency and precision in object detection. The device is also equipped with facial recognition and currency identification modules, providing invaluable assistance to the visually impaired. In addition, MagicEye features a GPS sensor for navigation, allowing users to move about with ease, as well as a proximity sensor for detecting nearby objects without physical contact. In summary, MagicEye is an innovative and highly advanced wearable device that has been designed to address the many challenges faced by individuals with visual impairments. It is equipped with state-of-the-art object detection and navigation capabilities that are tailored to the needs of the visually impaired, making it one of the most promising solutions to assist those who are struggling with visual impairments.
Abstract:Smart healthcare which is built as healthcare Cyber-Physical System (H-CPS) from Internet-of-Medical-Things (IoMT) is becoming more important than before. Medical devices and their connectivity through Internet with alongwith the electronics health record (EHR) and AI analytics making H-CPS possible. IoMT-end devices like wearables and implantables are key for H-CPS based smart healthcare. Smart garment is a specific wearable which can be used for smart healthcare. There are various smart garments that help users to monitor their body vitals in real-time. Many commercially available garments collect the vital data and transmit it to the mobile application for visualization. However, these don't perform real-time analysis for the user to comprehend their health conditions. Also, such garments are not included with an alert system to alert users and contacts in case of emergency. In MyWear, we propose a wearable body vital monitoring garment that captures physiological data and automatically analyses such heart rate, stress level, muscle activity to detect abnormalities. A copy of the physiological data is transmitted to the cloud for detecting any abnormalities in heart beats and predict any potential heart failure in future. We also propose a deep neural network (DNN) model that automatically classifies abnormal heart beat and potential heart failure. For immediate assistance in such a situation, we propose an alert system that sends an alert message to nearby medical officials. The proposed MyWear has an average accuracy of 96.9% and precision of 97.3% for detection of the abnormalities.