Abstract:Clustering performs an essential role in many real world applications, such as market research, pattern recognition, data analysis, and image processing. However, due to the high dimensionality of the input feature values, the data being fed to clustering algorithms usually contains noise and thus could lead to in-accurate clustering results. While traditional dimension reduction and feature selection algorithms could be used to address this problem, the simple heuristic rules used in those algorithms are based on some particular assumptions. When those assumptions does not hold, these algorithms then might not work. In this paper, we propose DAC, Deep Autoencoder-based Clustering, a generalized data-driven framework to learn clustering representations using deep neuron networks. Experiment results show that our approach could effectively boost performance of the K-Means clustering algorithm on a variety types of datasets.
Abstract:Patch-based denoising algorithms like BM3D have achieved outstanding performance. An important idea for the success of these methods is to exploit the recurrence of similar patches in an input image to estimate the underlying image structures. However, in these algorithms, the similar patches used for denoising are obtained via Nearest Neighbour Search (NNS) and are sometimes not optimal. First, due to the existence of noise, NNS can select similar patches with similar noise patterns to the reference patch. Second, the unreliable noisy pixels in digital images can bring a bias to the patch searching process and result in a loss of color fidelity in the final denoising result. We observe that given a set of good similar patches, their distribution is not necessarily centered at the noisy reference patch and can be approximated by a Gaussian component. Based on this observation, we present a patch searching method that clusters similar patch candidates into patch groups using Gaussian Mixture Model-based clustering, and selects the patch group that contains the reference patch as the final patches for denoising. We also use an unreliable pixel estimation algorithm to pre-process the input noisy images to further improve the patch searching. Our experiments show that our approach can better capture the underlying patch structures and can consistently enable the state-of-the-art patch-based denoising algorithms, such as BM3D, LPCA and PLOW, to better denoise images by providing them with patches found by our approach while without modifying these algorithms.
Abstract:This paper presents a method for capturing high-speed video using an asynchronous camera array. Our method sequentially fires each sensor in a camera array with a small time offset and assembles captured frames into a high-speed video according to the time stamps. The resulting video, however, suffers from parallax jittering caused by the viewpoint difference among sensors in the camera array. To address this problem, we develop a dedicated novel view synthesis algorithm that transforms the video frames as if they were captured by a single reference sensor. Specifically, for any frame from a non-reference sensor, we find the two temporally neighboring frames captured by the reference sensor. Using these three frames, we render a new frame with the same time stamp as the non-reference frame but from the viewpoint of the reference sensor. Specifically, we segment these frames into super-pixels and then apply local content-preserving warping to warp them to form the new frame. We employ a multi-label Markov Random Field method to blend these warped frames. Our experiments show that our method can produce high-quality and high-speed video of a wide variety of scenes with large parallax, scene dynamics, and camera motion and outperforms several baseline and state-of-the-art approaches.
Abstract:A wide variety of image denoising methods are available now. However, the performance of a denoising algorithm often depends on individual input noisy images as well as its parameter setting. In this paper, we present a no-reference image denoising quality assessment method that can be used to select for an input noisy image the right denoising algorithm with the optimal parameter setting. This is a challenging task as no ground truth is available. This paper presents a data-driven approach to learn to predict image denoising quality. Our method is based on the observation that while individual existing quality metrics and denoising models alone cannot robustly rank denoising results, they often complement each other. We accordingly design denoising quality features based on these existing metrics and models and then use Random Forests Regression to aggregate them into a more powerful unified metric. Our experiments on images with various types and levels of noise show that our no-reference denoising quality assessment method significantly outperforms the state-of-the-art quality metrics. This paper also provides a method that leverages our quality assessment method to automatically tune the parameter settings of a denoising algorithm for an input noisy image to produce an optimal denoising result.