Abstract:Estimating heterogeneous treatment effects across individuals has attracted growing attention as a statistical tool for performing critical decision-making. We propose a Bayesian inference framework that quantifies the uncertainty in treatment effect estimation to support decision-making in a relatively small sample size setting. Our proposed model places Gaussian process priors on the nonparametric components of a semiparametric model called a partially linear model. This model formulation has three advantages. First, we can analytically compute the posterior distribution of a treatment effect without relying on the computationally demanding posterior approximation. Second, we can guarantee that the posterior distribution concentrates around the true one as the sample size goes to infinity. Third, we can incorporate prior knowledge about a treatment effect into the prior distribution, improving the estimation efficiency. Our experimental results show that even in the small sample size setting, our method can accurately estimate the heterogeneous treatment effects and effectively quantify its estimation uncertainty.
Abstract:In the estimation of the causal effect under linear Structural Causal Models (SCMs), it is common practice to first identify the causal structure, estimate the probability distributions, and then calculate the causal effect. However, if the goal is to estimate the causal effect, it is not necessary to fix a single causal structure or probability distributions. In this paper, we first show from a Bayesian perspective that it is Bayes optimal to weight (average) the causal effects estimated under each model rather than estimating the causal effect under a fixed single model. This idea is also known as Bayesian model averaging. Although the Bayesian model averaging is optimal, as the number of candidate models increases, the weighting calculations become computationally hard. We develop an approximation to the Bayes optimal estimator by using Gaussian scale mixture distributions.