Abstract:Background initialization is an important step in many high-level applications of video processing,ranging from video surveillance to video inpainting.However,this process is often affected by practical challenges such as illumination changes,background motion,camera jitter and intermittent movement,etc.In this paper,we develop a co-occurrence background model with superpixel segmentation for robust background initialization. We first introduce a novel co-occurrence background modeling method called as Co-occurrence Pixel-Block Pairs(CPB)to generate a reliable initial background model,and the superpixel segmentation is utilized to further acquire the spatial texture Information of foreground and background.Then,the initial background can be determined by combining the foreground extraction results with the superpixel segmentation information.Experimental results obtained from the dataset of the challenging benchmark(SBMnet)validate it's performance under various challenges.
Abstract:Change detection plays an important role in most video-based applications. The first stage is to build appropriate background model, which is now becoming increasingly complex as more sophisticated statistical approaches are introduced to cover challenging situations and provide reliable detection. This paper reports a simple and intuitive statistical model based on deeper learning spatial correlation among pixels: For each observed pixel, we select a group of supporting pixels with high correlation, and then use a single Gaussian to model the intensity deviations between the observed pixel and the supporting ones. In addition, a multi-channel model updating is integrated on-line and a temporal intensity constraint for each pixel is defined. Although this method is mainly designed for coping with sudden illumination changes, experimental results using all the video sequences provided on changedetection.net validate it is comparable with other recent methods under various situations.