Abstract:Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, yet challenges persist in adapting these models for low-resource languages. In this study, we investigate the effects of Low-Rank Adaptation (LoRA) Parameter-Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi, a language with limited resources. Using a translated Alpaca dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation metrics often show a performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts. The observations indicate improvements in target language generation capabilities but a reduction in reasoning abilities following language adaptation. These results underscore the need for improved evaluation methodologies and the creation of high-quality native datasets to accurately assess language-specific model performance in low-resource settings.
Abstract:Code-mixing is the practice of using two or more languages in a single sentence, which often occurs in multilingual communities such as India where people commonly speak multiple languages. Classic NLP tools, trained on monolingual data, face challenges when dealing with code-mixed data. Extracting meaningful information from sentences containing multiple languages becomes difficult, particularly in tasks like hate speech detection, due to linguistic variation, cultural nuances, and data sparsity. To address this, we aim to analyze the significance of code-mixed embeddings and evaluate the performance of BERT and HingBERT models (trained on a Hindi-English corpus) in hate speech detection. Our study demonstrates that HingBERT models, benefiting from training on the extensive Hindi-English dataset L3Cube-HingCorpus, outperform BERT models when tested on hate speech text datasets. We also found that code-mixed Hing-FastText performs better than standard English FastText and vanilla BERT models.