Abstract:The variability in ECG readings influenced by individual patient characteristics has posed a considerable challenge to adopting automated ECG analysis in clinical settings. A novel feature fusion technique termed SACC (Self Attentive Canonical Correlation) was proposed to address this. This technique is combined with DPN (Dual Pathway Network) and depth-wise separable convolution to create a robust, interpretable, and fast end-to-end arrhythmia classification model named rECGnition_v2.0 (robust ECG abnormality detection). This study uses MIT-BIH, INCARTDB and EDB dataset to evaluate the efficiency of rECGnition_v2.0 for various classes of arrhythmias. To investigate the influence of constituting model components, various ablation studies were performed, i.e. simple concatenation, CCA and proposed SACC were compared, while the importance of global and local ECG features were tested using DPN rECGnition_v2.0 model and vice versa. It was also benchmarked with state-of-the-art CNN models for overall accuracy vs model parameters, FLOPs, memory requirements, and prediction time. Furthermore, the inner working of the model was interpreted by comparing the activation locations in ECG before and after the SACC layer. rECGnition_v2.0 showed a remarkable accuracy of 98.07% and an F1-score of 98.05% for classifying ten distinct classes of arrhythmia with just 82.7M FLOPs per sample, thereby going beyond the performance metrics of current state-of-the-art (SOTA) models by utilizing MIT-BIH Arrhythmia dataset. Similarly, on INCARTDB and EDB datasets, excellent F1-scores of 98.01% and 96.21% respectively was achieved for AAMI classification. The compact architectural footprint of the rECGnition_v2.0, characterized by its lesser trainable parameters and diminished computational demands, unfurled several advantages including interpretability and scalability.
Abstract:The urgent need to promptly detect cardiac disorders from 12-lead Electrocardiograms using limited computations is motivated by the heart's fast and complex electrical activity and restricted computational power of portable devices. Timely and precise diagnoses are crucial since delays might significantly impact patient health outcomes. This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately. We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections. The proposed activation function is used with Convolutional Neural Network architecture to includes kernel weight sharing across the ECG's various leads. This innovative method thoroughly generalizes the global 12-lead ECG features and minimizes the model's complexity by decreasing the trainable parameters. aSoftMax, combined with enhanced CNN architecture yielded AmpliNetECG12, we obtain exceptional accuracy of 84% in diagnosing cardiac disorders. AmpliNetECG12 shows outstanding prediction ability when used with the CPSC2018 dataset for arrhythmia classification. The model attains an F1-score of 80.71% and a ROC-AUC score of 96.00%, with 280,000 trainable parameters which signifies the lightweight yet efficient nature of AmpliNetECG12. The stochastic characteristics of aSoftMax, a fundamental element of AmpliNetECG12, improve prediction accuracy and also increasse the model's interpretability. This feature enhances comprehension of important ECG segments in different forms of arrhythmias, establishing a new standard of explainable architecture for cardiac disorder classification.