Abstract:This paper proposes a black-box adversarial attack method to automatic speech recognition systems. Some studies have attempted to attack neural networks for speech recognition; however, these methods did not consider the robustness of generated adversarial examples against timing lag with a target speech. The proposed method in this paper adopts Evolutionary Multi-objective Optimization (EMO)that allows it generating robust adversarial examples under black-box scenario. Experimental results showed that the proposed method successfully generated adjust-free adversarial examples, which are sufficiently robust against timing lag so that an attacker does not need to take the timing of playing it against the target speech.