Abstract:Black Sigatoka disease severely decreases global banana production, and climate change aggravates the problem by altering fungal species distributions. Due to the heavy financial burden of managing this infectious disease, farmers in developing countries face significant banana crop losses. Though scientists have produced mathematical models of infectious diseases, adapting these models to incorporate climate effects is difficult. We present MR. NODE (Multiple predictoR Neural ODE), a neural network that models the dynamics of black Sigatoka infection learnt directly from data via Neural Ordinary Differential Equations. Our method encodes external predictor factors into the latent space in addition to the variable that we infer, and it can also predict the infection risk at an arbitrary point in time. Empirically, we demonstrate on historical climate data that our method has superior generalization performance on time points up to one month in the future and unseen irregularities. We believe that our method can be a useful tool to control the spread of black Sigatoka.