Abstract:This work introduces an analytical approach for detecting and estimating external forces acting on deformable linear objects (DLOs) using only their observed shapes. In many robot-wire interaction tasks, contact occurs not at the end-effector but at other points along the robot's body. Such scenarios arise when robots manipulate wires indirectly (e.g., by nudging) or when wires act as passive obstacles in the environment. Accurately identifying these interactions is crucial for safe and efficient trajectory planning, helping to prevent wire damage, avoid restricted robot motions, and mitigate potential hazards. Existing approaches often rely on expensive external force-torque sensor or that contacts occur at the end-effector for accurate force estimation. Using wire shape information acquired from a depth camera and under the assumption that the wire is in or near its static equilibrium, our method estimates both the location and magnitude of external forces without additional prior knowledge. This is achieved by exploiting derived consistency conditions and solving a system of linear equations based on force-torque balance along the wire. The approach was validated through simulation, where it achieved high accuracy, and through real-world experiments, where accurate estimation was demonstrated in selected interaction scenarios.




Abstract:Force and torque sensing is crucial in robotic manipulation across both collaborative and industrial settings. Traditional methods for dynamics identification enable the detection and control of external forces and torques without the need for costly sensors. However, these approaches show limitations in scenarios where robot dynamics, particularly the end-effector payload, are subject to changes. Moreover, existing calibration techniques face trade-offs between efficiency and accuracy due to concerns over joint space coverage. In this paper, we introduce a calibration scheme that leverages pre-trained Neural Network models to learn calibrated dynamics across a wide range of joint space in advance. This offline learning strategy significantly reduces the need for online data collection, whether for selection of the optimal model or identification of payload features, necessitating merely a 4-second trajectory for online calibration. This method is particularly effective in tasks that require frequent dynamics recalibration for precise contact estimation. We further demonstrate the efficacy of this approach through applications in sensorless joint and task compliance, accounting for payload variability.




Abstract:Physical human-robot interaction has been an area of interest for decades. Collaborative tasks, such as joint compliance, demand high-quality joint torque sensing. While external torque sensors are reliable, they come with the drawbacks of being expensive and vulnerable to impacts. To address these issues, studies have been conducted to estimate external torques using only internal signals, such as joint states and current measurements. However, insufficient attention has been given to friction hysteresis approximation, which is crucial for tasks involving extensive dynamic to static state transitions. In this paper, we propose a deep-learning-based method that leverages a novel long-term memory scheme to achieve dynamics identification, accurately approximating the static hysteresis. We also introduce modifications to the well-known Residual Learning architecture, retaining high accuracy while reducing inference time. The robustness of the proposed method is illustrated through a joint compliance and task compliance experiment.
Abstract:Force Sensing and Force Control are essential to many industrial applications. Typically, a 6-axis Force/Torque (F/T) sensor is mounted between the robot's wrist and the end-effector in order to measure the forces and torques exerted by the environment onto the robot (the external wrench). Although a typical 6-axis F/T sensor can provide highly accurate measurements, it is expensive and vulnerable to drift and external impacts. Existing methods aiming at estimating the external wrench using only the robot's internal signals are limited in scope: for example, wrench estimation accuracy was mostly validated in free-space motions and simple contacts as opposed to tasks like assembly that require high-precision force control. Here we present a Neural Network based method and argue that by devoting particular attention to the training data structure, it is possible to accurately estimate the external wrench in a wide range of scenarios based solely on internal signals. As an illustration, we demonstrate a pin insertion experiment with 100-micron clearance and a hand-guiding experiment, both performed without external F/T sensors or joint torque sensors. Our result opens the possibility of equipping the existing 2.7 million industrial robots with Force Sensing and Force Control capabilities without any additional hardware.