Abstract:This paper introduces a modified Byrd-Omojokun (BO) trust region algorithm to address the challenges posed by noisy function and gradient evaluations. The original BO method was designed to solve equality constrained problems and it forms the backbone of some interior point methods for general large-scale constrained optimization. A key strength of the BO method is its robustness in handling problems with rank-deficient constraint Jacobians. The algorithm proposed in this paper introduces a new criterion for accepting a step and for updating the trust region that makes use of an estimate in the noise in the problem. The analysis presented here gives conditions under which the iterates converge to regions of stationary points of the problem, determined by the level of noise. This analysis is more complex than for line search methods because the trust region carries (noisy) information from previous iterates. Numerical tests illustrate the practical performance of the algorithm.
Abstract:Many machine learning applications and tasks rely on the stochastic gradient descent (SGD) algorithm and its variants. Effective step length selection is crucial for the success of these algorithms, which has motivated the development of algorithms such as ADAM or AdaGrad. In this paper, we propose a novel algorithm for adaptive step length selection in the classical SGD framework, which can be readily adapted to other stochastic algorithms. Our proposed algorithm is inspired by traditional nonlinear optimization techniques and is supported by analytical findings. We show that under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements, and generates iterates that converge to a stationary neighborhood of a solution in expectation. We test the proposed algorithm on logistic regressions and deep neural networks and demonstrate that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.