Abstract:Despite advancements in multimodal large language models (MLLMs), current approaches struggle in medium-to-long video understanding due to frame and context length limitations. As a result, these models often depend on frame sampling, which risks missing key information over time and lacks task-specific relevance. To address these challenges, we introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling, while avoiding LLM's context length limitations. We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding, with the entity stream capturing frame-level object information within a short context and the scene stream identifying their broader interactions over longer period of time. Each stream is supported by dedicated memory banks which enables our proposed Hierachical Querying transformer (HierarQ) to effectively capture short and long-term context. Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance across most datasets, proving its robustness and efficiency for comprehensive video analysis.
Abstract:Geometric understanding is crucial for navigating and interacting with our environment. While large Vision Language Models (VLMs) demonstrate impressive capabilities, deploying them in real-world scenarios necessitates a comparable geometric understanding in visual perception. In this work, we focus on the geometric comprehension of these models; specifically targeting the depths and heights of objects within a scene. Our observations reveal that, although VLMs excel in basic geometric properties perception such as shape and size, they encounter significant challenges in reasoning about the depth and height of objects. To address this, we introduce a suite of benchmark datasets encompassing Synthetic 2D, Synthetic 3D, and Real-World scenarios to rigorously evaluate these aspects. We benchmark 17 state-of-the-art VLMs using these datasets and find that they consistently struggle with both depth and height perception. Our key insights include detailed analyses of the shortcomings in depth and height reasoning capabilities of VLMs and the inherent bias present in these models. This study aims to pave the way for the development of VLMs with enhanced geometric understanding, crucial for real-world applications. The code and datasets for our benchmarks will be available at \url{https://tinyurl.com/DH-Bench1}.
Abstract:In this work, we study a novel problem which focuses on person identification while performing daily activities. Learning biometric features from RGB videos is challenging due to spatio-temporal complexity and presence of appearance biases such as clothing color and background. We propose ABNet, a novel framework which leverages disentanglement of biometric and non-biometric features to perform effective person identification from daily activities. ABNet relies on a bias-less teacher to learn biometric features from RGB videos and explicitly disentangle non-biometric features with the help of biometric distortion. In addition, ABNet also exploits activity prior for biometrics which is enabled by joint biometric and activity learning. We perform comprehensive evaluation of the proposed approach across five different datasets which are derived from existing activity recognition benchmarks. Furthermore, we extensively compare ABNet with existing works in person identification and demonstrate its effectiveness for activity-based biometrics across all five datasets. The code and dataset can be accessed at: \url{https://github.com/sacrcv/Activity-Biometrics/}