Abstract:This research presents an advanced AI-powered ultrasound imaging system that incorporates real-time image processing, organ tracking, and voice commands to enhance the efficiency and accuracy of diagnoses in clinical practice. Traditional ultrasound diagnostics often require significant time and introduce a degree of subjectivity due to user interaction. The goal of this innovative solution is to provide Sonologists with a more predictable and productive imaging procedure utilizing artificial intelligence, computer vision, and voice technology. The functionality of the system employs computer vision and deep learning algorithms, specifically adopting the Mask R-CNN model from Detectron2 for semantic segmentation of organs and key landmarks. This automation improves diagnostic accuracy by enabling the extraction of valuable information with minimal human input. Additionally, it includes a voice recognition feature that allows for hands-free operation, enabling users to control the system with commands such as freeze or liver, all while maintaining their focus on the patient. The architecture comprises video processing and real-time segmentation modules that prepare the system to perform essential imaging functions, such as freezing and zooming in on frames. The liver histopathology module, optimized for detecting fibrosis, achieved an impressive accuracy of 98.6%. Furthermore, the organ segmentation module produces output confidence levels between 50% and 95%, demonstrating its efficacy in organ detection.
Abstract:Applications in behavioural research, human-computer interaction, and mental health depend on the ability to recognize emotions. In order to improve the accuracy of emotion recognition using electroencephalography (EEG) data, this work presents a hybrid quantum deep learning technique. Conventional EEG-based emotion recognition techniques are limited by noise and high-dimensional data complexity, which make feature extraction difficult. To tackle these issues, our method combines traditional deep learning classification with quantum-enhanced feature extraction. To identify important brain wave patterns, Bandpass filtering and Welch method are used as preprocessing techniques on EEG data. Intricate inter-band interactions that are essential for determining emotional states are captured by mapping frequency band power attributes (delta, theta, alpha, and beta) to quantum representations. Entanglement and rotation gates are used in a hybrid quantum circuit to maximize the model's sensitivity to EEG patterns associated with different emotions. Promising results from evaluation on a test dataset indicate the model's potential for accurate emotion recognition. The model will be extended for real-time applications and multi-class categorization in future study, which could improve EEG-based mental health screening instruments. This method offers a promising tool for applications in adaptive human-computer systems and mental health monitoring by showcasing the possibilities of fusing traditional deep learning with quantum processing for reliable, scalable emotion recognition.
Abstract:In order to support the creation of reliable machine learning models for anomaly detection, this project focuses on preprocessing, enhancing, and organizing a medical imaging dataset. There are two classifications in the dataset: normal and abnormal, along with extra noise fluctuations. In order to improve the photographs' quality, undesirable artifacts, including visible medical equipment at the edges, were eliminated using central cropping. Adjusting the brightness and contrast was one of the additional preprocessing processes. Normalization was then performed to normalize the data. To make classification jobs easier, the dataset was methodically handled by combining several image subsets into two primary categories: normal and pathological. To provide a strong training set that adapts well to real-world situations, sophisticated picture preprocessing techniques were used, such as contrast enhancement and real-time augmentation (including rotations, zooms, and brightness modifications). To guarantee efficient model evaluation, the data was subsequently divided into training and testing subsets. In order to create precise and effective machine learning models for medical anomaly detection, high-quality input data is ensured via this thorough approach. Because of the project pipeline's flexible and scalable design, it can be easily integrated with bigger clinical decision-support systems.
Abstract:Understanding the appropriate skin layer thickness in wounded sites is an important tool to move forward on wound healing practices and treatment protocols. Methods to measure depth often are invasive and less specific. This paper introduces a novel method that is non-invasive with deep learning techniques using classifying of skin layers that helps in measurement of wound depth through heatmap analysis. A set of approximately 200 labeled images of skin allows five classes to be distinguished: scars, wounds, and healthy skin, among others. Each image has annotated key layers, namely the stratum cornetum, the epidermis, and the dermis, in the software Roboflow. In the preliminary stage, the Heatmap generator VGG16 was used to enhance the visibility of tissue layers, based upon which their annotated images were used to train ResNet18 with early stopping techniques. It ended up at a very high accuracy rate of 97.67%. To do this, the comparison of the models ResNet18, VGG16, DenseNet121, and EfficientNet has been done where both EfficientNet and ResNet18 have attained accuracy rates of almost 95.35%. For further hyperparameter tuning, EfficientNet and ResNet18 were trained at six different learning rates to determine the best model configuration. It has been noted that the accuracy has huge variations with different learning rates. In the case of EfficientNet, the maximum achievable accuracy was 95.35% at the rate of 0.0001. The same was true for ResNet18, which also attained its peak value of 95.35% at the same rate. These facts indicate that the model can be applied and utilized in actual-time, non-invasive wound assessment, which holds a great promise to improve clinical diagnosis and treatment planning.
Abstract:The paper presents a novel Auto Language Prediction Dictionary Capsule (ALPDC) framework for language prediction and machine translation. The model uses a combination of neural networks and symbolic representations to predict the language of a given input text and then translate it to a target language using pre-built dictionaries. This research work also aims to translate the text of various languages to its literal meaning in English. The proposed model achieves state-of-the-art results on several benchmark datasets and significantly improves translation accuracy compared to existing methods. The results show the potential of the proposed method for practical use in multilingual communication and natural language processing tasks.