Abstract:Integrating artificial intelligence into modern society is profoundly transformative, significantly enhancing productivity by streamlining various daily tasks. AI-driven recognition systems provide notable advantages in the food sector, including improved nutrient tracking, tackling food waste, and boosting food production and consumption efficiency. Accurate food classification is a crucial initial step in utilizing advanced AI models, as the effectiveness of this process directly influences the success of subsequent operations; therefore, achieving high accuracy at a reasonable speed is essential. Despite existing research efforts, a gap persists in improving performance while ensuring rapid processing times, prompting researchers to pursue cost-effective and precise models. This study addresses this gap by employing the state-of-the-art EfficientNetB7 architecture, enhanced through transfer learning, data augmentation, and the CBAM attention module. This methodology results in a robust model that surpasses previous studies in accuracy while maintaining rapid processing suitable for real-world applications. The Food11 dataset from Kaggle was utilized, comprising 16643 imbalanced images across 11 diverse classes with significant intra-category diversities and inter-category similarities. Furthermore, the proposed methodology, bolstered by various deep learning techniques, consistently achieves an impressive average accuracy of 96.40%. Notably, it can classify over 60 images within one second during inference on unseen data, demonstrating its ability to deliver high accuracy promptly. This underscores its potential for practical applications in accurate food classification and enhancing efficiency in subsequent processes.
Abstract:In contemporary society, the application of artificial intelligence for automatic food recognition offers substantial potential for nutrition tracking, reducing food waste, and enhancing productivity in food production and consumption scenarios. Modern technologies such as Computer Vision and Deep Learning are highly beneficial, enabling machines to learn automatically, thereby facilitating automatic visual recognition. Despite some research in this field, the challenge of achieving accurate automatic food recognition quickly remains a significant research gap. Some models have been developed and implemented, but maintaining high performance swiftly, with low computational cost and low access to expensive hardware accelerators, still needs further exploration and research. This study employs the pretrained MobileNetV2 model, which is efficient and fast, for food recognition on the public Food11 dataset, comprising 16643 images. It also utilizes various techniques such as dataset understanding, transfer learning, data augmentation, regularization, dynamic learning rate, hyperparameter tuning, and consideration of images in different sizes to enhance performance and robustness. These techniques aid in choosing appropriate metrics, achieving better performance, avoiding overfitting and accuracy fluctuations, speeding up the model, and increasing the generalization of findings, making the study and its results applicable to practical applications. Despite employing a light model with a simpler structure and fewer trainable parameters compared to some deep and dense models in the deep learning area, it achieved commendable accuracy in a short time. This underscores the potential for practical implementation, which is the main intention of this study.