Abstract:This research presents an advanced sentiment analysis framework studied on Iranian restaurant reviews, combining fuzzy logic with conventional sentiment analysis techniques to assess both sentiment polarity and intensity. A dataset of 1266 reviews, alongside corresponding star ratings, was compiled and preprocessed for analysis. Initial sentiment analysis was conducted using the Sentiment Intensity Analyzer (VADER), a rule-based tool that assigns sentiment scores across positive, negative, and neutral categories. However, a noticeable bias toward neutrality often led to an inaccurate representation of sentiment intensity. To mitigate this issue, based on a fuzzy perspective, two refinement techniques were introduced, applying square-root and fourth-root transformations to amplify positive and negative sentiment scores while maintaining neutrality. This led to three distinct methodologies: Approach 1, utilizing unaltered VADER scores; Approach 2, modifying sentiment values using the square root; and Approach 3, applying the fourth root for further refinement. A Fuzzy Inference System incorporating comprehensive fuzzy rules was then developed to process these refined scores and generate a single, continuous sentiment value for each review based on each approach. Comparative analysis, including human supervision and alignment with customer star ratings, revealed that the refined approaches significantly improved sentiment analysis by reducing neutrality bias and better capturing sentiment intensity. Despite these advancements, minor over-amplification and persistent neutrality in domain-specific cases were identified, leading us to propose several future studies to tackle these occasional barriers. The study's methodology and outcomes offer valuable insights for businesses seeking a more precise understanding of consumer sentiment, enhancing sentiment analysis across various industries.
Abstract:Integrating artificial intelligence into modern society is profoundly transformative, significantly enhancing productivity by streamlining various daily tasks. AI-driven recognition systems provide notable advantages in the food sector, including improved nutrient tracking, tackling food waste, and boosting food production and consumption efficiency. Accurate food classification is a crucial initial step in utilizing advanced AI models, as the effectiveness of this process directly influences the success of subsequent operations; therefore, achieving high accuracy at a reasonable speed is essential. Despite existing research efforts, a gap persists in improving performance while ensuring rapid processing times, prompting researchers to pursue cost-effective and precise models. This study addresses this gap by employing the state-of-the-art EfficientNetB7 architecture, enhanced through transfer learning, data augmentation, and the CBAM attention module. This methodology results in a robust model that surpasses previous studies in accuracy while maintaining rapid processing suitable for real-world applications. The Food11 dataset from Kaggle was utilized, comprising 16643 imbalanced images across 11 diverse classes with significant intra-category diversities and inter-category similarities. Furthermore, the proposed methodology, bolstered by various deep learning techniques, consistently achieves an impressive average accuracy of 96.40%. Notably, it can classify over 60 images within one second during inference on unseen data, demonstrating its ability to deliver high accuracy promptly. This underscores its potential for practical applications in accurate food classification and enhancing efficiency in subsequent processes.
Abstract:In contemporary society, the application of artificial intelligence for automatic food recognition offers substantial potential for nutrition tracking, reducing food waste, and enhancing productivity in food production and consumption scenarios. Modern technologies such as Computer Vision and Deep Learning are highly beneficial, enabling machines to learn automatically, thereby facilitating automatic visual recognition. Despite some research in this field, the challenge of achieving accurate automatic food recognition quickly remains a significant research gap. Some models have been developed and implemented, but maintaining high performance swiftly, with low computational cost and low access to expensive hardware accelerators, still needs further exploration and research. This study employs the pretrained MobileNetV2 model, which is efficient and fast, for food recognition on the public Food11 dataset, comprising 16643 images. It also utilizes various techniques such as dataset understanding, transfer learning, data augmentation, regularization, dynamic learning rate, hyperparameter tuning, and consideration of images in different sizes to enhance performance and robustness. These techniques aid in choosing appropriate metrics, achieving better performance, avoiding overfitting and accuracy fluctuations, speeding up the model, and increasing the generalization of findings, making the study and its results applicable to practical applications. Despite employing a light model with a simpler structure and fewer trainable parameters compared to some deep and dense models in the deep learning area, it achieved commendable accuracy in a short time. This underscores the potential for practical implementation, which is the main intention of this study.