Abstract:An image retrieval method based on convolution neural network and dimension reduction is proposed in this paper. Convolution neural network is used to extract high-level features of images, and to solve the problem that the extracted feature dimensions are too high and have strong correlation, multilinear principal component analysis is used to reduce the dimension of features. The features after dimension reduction are binary hash coded for fast image retrieval. Experiments show that the method proposed in this paper has better retrieval effect than the retrieval method based on principal component analysis on the e-commerce image datasets.
Abstract:In order to identify and prevent tea leaf diseases effectively, convolution neural network (CNN) was used to realize the image recognition of tea disease leaves. Firstly, image segmentation and data enhancement are used to preprocess the images, and then these images were input into the network for training. Secondly, to reach a higher recognition accuracy of CNN, the learning rate and iteration numbers were adjusted frequently and the dropout was added properly in the case of over-fitting. Finally, the experimental results show that the recognition accuracy of CNN is 93.75%, while the accuracy of SVM and BP neural network is 89.36% and 87.69% respectively. Therefore, the recognition algorithm based on CNN is better in classification and can improve the recognition efficiency of tea leaf diseases effectively.