Abstract:Purpose Automated detection of region of interest (ROI) is a critical step for many medical image applications such as heart ROIs detection in perfusion MRI images, lung boundary detection in chest X-rays, and femoral head detection in pelvic radiographs. Thus, we proposed a practical framework of ROIs detection in medical images, with a case study for hip detection in anteroposterior (AP) pelvic radiographs. Materials and Methods: We conducted a retrospective study which analyzed hip joints seen on 7,399 AP pelvic radiographs from three diverse sources, including 4,290 high resolution radiographs from Chang Gung Memorial Hospital Osteoarthritis, 3,008 low to medium resolution radiographs from Osteoarthritis Initiative, and 101 heterogeneous radiographs from Google image search engine. We presented a deep learning-based ROI detection framework utilizing single-shot multi-box detector (SSD) with ResNet-101 backbone and customized head structure based on the characteristics of the obtained datasets, whose ground truths were labeled by non-medical annotators in a simple graphical interface. Results: Our method achieved average intersection over union (IoU)=0.8115, average confidence=0.9812, and average precision with threshold IoU=0.5 (AP50)=0.9901 in the independent test set, suggesting that the detected hip regions have appropriately covered main features of the hip joints. Conclusion: The proposed approach featured on low-cost labeling, data-driven model design, and heterogeneous data testing. We have demonstrated the feasibility of training a robust hip region detector for AP pelvic radiographs. This practical framework has a promising potential for a wide range of medical image applications.