Abstract:A uniform distribution of the image force field around the object fasts the convergence speed of the segmentation process. However, to achieve this aim, it causes the force constructed from the heat diffusion model unable to indicate the object boundaries accurately. The image force based on electrostatic field model can perform an exact shape recovery. First, this study introduces a fusion scheme of these two image forces, which is capable of extracting the object boundary with high precision and fast speed. Until now, there is no satisfied analysis about the relationship between Snakes and Geometric Active Contours (GAC). The second contribution of this study addresses that the GAC model can be deduced directly from Snakes model. It proves that each term in GAC and Snakes is correspondent and has similar function. However, the two models are expressed using different mathematics. Further, since losing the ability of rotating the contour, adoption of level sets can limits the usage of GAC in some circumstances.
Abstract:Physical modeling method, represented by simulation and visualization of the principles in physics, is introduced in the shape extraction of the active contours. The objectives of adopting this concept are to address the several major difficulties in the application of Active Contours. Primarily, a technique is developed to realize the topological changes of Parametric Active Contours (Snakes). The key strategy is to imitate the process of a balloon expanding and filling in a closed space with several objects. After removing the touched balloon surfaces, the objects can be identified by surrounded remaining balloon surfaces. A burned region swept by Snakes is utilized to trace the contour and to give a criterion for stopping the movement of Snake curve. When the Snakes terminates evolution totally, through ignoring this criterion, it can form a connected area by evolving the Snakes again and continuing the region burning. The contours extracted from the boundaries of the burned area can represent the child snake of each object respectively. Secondly, a novel scheme is designed to solve the problems of leakage of the contour from the large gaps, and the segmentation error in Geometric Active Contours (GAC). It divides the segmentation procedure into two processing stages. By simulating the wave propagating in the isotropic substance at the final stage, it can significantly enhance the effect of image force in GAC based on Level Set and give the satisfied solutions to the two problems. Thirdly, to support the physical models for active contours above, we introduce a general image force field created on a template plane over the image plane. This force is more adaptable to noisy images with complicated geometric shapes.