Abstract:We present angle of attack control, a novel control strategy for a hip energized Penn Jerboa. The energetic losses from damping are counteracted by aligning most of the velocity at touchdown in the radial direction and the fore-aft velocity is controlled by using the hip torque to control to a target angular momentum. The control strategy results in highly asymmetric leg angle trajectories, thus avoiding the traction issues that plague hip actuated SLIP. Using a series of assumptions we find an analytical expression for the fixed points of an approximation to the hopping return map relating the design parameters to steady state gait performance. The hardware robot demonstrates stable locomotion with speeds ranging from 0.4 m/s to 2.5 m/s (2 leg lengths/s to 12.5 leg lengths/s) and heights ranging from 0.21 m to 0.27 m (1.05 leg lengths to 1.35 leg lengths). The performance of the empirical trials is well approximated by the analytical predictions.