Abstract:In the past few years, the Web of Things (WOT) became a beneficial game-changing technology within the Agriculture domain as it introduces innovative and promising solutions to the Internet of Things (IoT) agricultural applications problems by providing its services. WOT provides the support for integration, interoperability for heterogeneous devices, infrastructures, platforms, and the emergence of various other technologies. The main aim of this study is about understanding and providing a growing and existing research content, issues, and directions for the future regarding WOT-based agriculture. Therefore, a systematic literature review (SLR) of research articles is presented by categorizing the selected studies published between 2010 and 2020 into the following categories: research type, approaches, and their application domains. Apart from reviewing the state-of-the-art articles on WOT solutions for the agriculture field, a taxonomy of WOT-base agriculture application domains has also been presented in this study. A model has also presented to show the picture of WOT based Smart Agriculture. Lastly, the findings of this SLR and the research gaps in terms of open issues have been presented to provide suggestions on possible future directions for the researchers for future research.
Abstract:=One of the most frequently farmed crops is the tomato crop. Late blight is the most prevalent tomato disease in the world, and often causes a significant reduction in the production of tomato crops. The importance of tomatoes as an agricultural product necessitates early detection of late blight. It is produced by the fungus Phytophthora. The earliest signs of late blight on tomatoes are unevenly formed, water-soaked lesions on the leaves located on the plant canopy's younger leave White cottony growth may appear in humid environments evident on the undersides of the leaves that have been impacted. Lesions increase as the disease proceeds, turning the leaves brown to shrivel up and die. Using picture segmentation and the Multi-class SVM technique, late blight disorder is discovered in this work. Image segmentation is employed for separating damaged areas on leaves, and the Multi-class SVM method is used for reliable disease categorization. 30 reputable studies were chosen from a total of 2770 recognized papers. The primary goal of this study is to compile cutting-edge research that identifies current research trends, problems, and prospects for late blight detection. It also looks at current approaches for applying image processing to diagnose and detect late blight. A suggested taxonomy for late blight detection has also been provided. In the same way, a model for the development of the solutions to problems is also presented. Finally, the research gaps have been presented in terms of open issues for the provision of future directions in image processing for the researchers.
Abstract:Epilepsy is a neurological brain disorder which life threatening and gives rise to recurrent seizures that are unprovoked. It occurs due to the abnormal chemical changes in our brain. Over the course of many years, studies have been conducted to support automatic diagnosis of epileptic seizures for the ease of clinicians. For that, several studies entail the use of machine learning methods for the early prediction of epileptic seizures. Mainly, feature extraction methods have been used to extract the right features from the EEG data generated by the EEG machine and then various machine learning classifiers are used for the classification process. This study provides a systematic literature review of feature selection process as well as the classification performance. This study was limited to the finding of most used feature extraction methods and the classifiers used for accurate classification of normal to epileptic seizures. The existing literature was examined from well-known repositories such as MPDI, IEEEXplore, Wiley, Elsevier, ACM, Springerlink and others. Furthermore, a taxonomy was created that recapitulates the state-of-the-art used solutions for this problem. We also studied the nature of different benchmark and unbiased datasets and gave a rigorous analysis of the working of classifiers. Finally, we concluded the research by presenting the gaps, challenges and opportunities which can further help researchers in prediction of epileptic seizure