Abstract:In this paper we introduce a fully end-to-end approach for multi-spectral image registration and fusion. Our method for fusion combines images from different spectral channels into a single fused image by different approaches for low and high frequency signals. A prerequisite of fusion is a stage of geometric alignment between the spectral bands, commonly referred to as registration. Unfortunately, common methods for image registration of a single spectral channel do not yield reasonable results on images from different modalities. For that end, we introduce a new algorithm for multi-spectral image registration, based on a novel edge descriptor of feature points. Our method achieves an accurate alignment of a level that allows us to further fuse the images. As our experiments show, we produce a high quality of multi-spectral image registration and fusion under many challenging scenarios.
Abstract:In this paper, we introduce a novel deep-learning method to align cross-spectral images. Our approach relies on a learned descriptor which is invariant to different spectra. Multi-modal images of the same scene capture different signals and therefore their registration is challenging and it is not solved by classic approaches. To that end, we developed a feature-based approach that solves the visible (VIS) to Near-Infra-Red (NIR) registration problem. Our algorithm detects corners by Harris and matches them by a patch-metric learned on top of CIFAR-10 network descriptor. As our experiments demonstrate we achieve a high-quality alignment of cross-spectral images with a sub-pixel accuracy. Comparing to other existing methods, our approach is more accurate in the task of VIS to NIR registration.