Abstract:Parkinson's disease is a widespread neurodegenerative condition necessitating early diagnosis for effective intervention. This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals, employing a Support Vector Machine (SVM) classification model. this research presents novel contributions to enhance diagnostic accuracy and reliability. Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods. Drawing from recent studies, we have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis. Utilizing cutting-edge feature engineering, extensive hyperparameter tuning, and kernel selection, our method achieves not only heightened diagnostic accuracy but also emphasizes model interpretability, catering to both clinicians and researchers. Moreover, ethical concerns in healthcare machine learning, such as data privacy and biases, are conscientiously addressed. We assess our method's performance through experiments on a diverse dataset comprising EEG recordings from Parkinson's disease patients and healthy controls, demonstrating significantly improved diagnostic accuracy compared to conventional techniques. In conclusion, this paper introduces an innovative SVM-based approach for diagnosing Parkinson's disease from human EEG signals. Building upon the IEEE framework and previous research, its novelty lies in the capacity to enhance diagnostic accuracy while upholding interpretability and ethical considerations for practical healthcare applications. These advances promise to revolutionize early Parkinson's disease detection and management, ultimately contributing to enhanced patient outcomes and quality of life.
Abstract:The contagious and pandemic COVID-19 disease is currently considered as the main health concern and posed widespread panic across human-beings. It affects the human respiratory tract and lungs intensely. So that it has imposed significant threats for premature death. Although, its early diagnosis can play a vital role in revival phase, the radiography tests with the manual intervention are a time-consuming process. Time is also limited for such manual inspecting of numerous patients in the hospitals. Thus, the necessity of automatic diagnosis on the chest X-ray or the CT images with a high efficient performance is urgent. Toward this end, we propose a novel method, named as the ULGFBP-ResNet51 to tackle with the COVID-19 diagnosis in the images. In fact, this method includes Uniform Local Binary Pattern (ULBP), Gabor Filter (GF), and ResNet51. According to our results, this method could offer superior performance in comparison with the other methods, and attain maximum accuracy.
Abstract:Facial expressions are one of the most effective ways for non-verbal communications, which can be expressed as the Micro-Expression (ME) in the high-stake situations. The MEs are involuntary, rapid, and, subtle, and they can reveal real human intentions. However, their feature extraction is very challenging due to their low intensity and very short duration. Although Local Binary Pattern from Three Orthogonal Plane (LBP-TOP) feature extractor is useful for the ME analysis, it does not consider essential information. To address this problem, we propose a new feature extractor called Local Binary Pattern from Six Intersection Planes (LBP-SIPl). This method extracts LBP code on six intersection planes, and then it combines them. Results show that the proposed method has superior performance in apex frame spotting automatically in comparison with the relevant methods on the CASME database. Simulation results show that, using the proposed method, the apex frame has been spotted in 43% of subjects in the CASME database, automatically. Also, the mean absolute error of 1.76 is achieved, using our novel proposed method.