Abstract:In contrast to the well-investigated field of SAR-to-Optical translation, this study explores the lesser-investigated domain of Optical-to-SAR translation, a challenging field due to the ill-posed nature of this translation. The complexity arises as a single optical data can have multiple SAR representations based on the SAR viewing geometry. We propose a novel approach, termed SAR Temporal Shifting, which inputs an optical data from the desired timestamp along with a SAR data from a different temporal point but with a consistent viewing geometry as the expected SAR data, both complemented with a change map of optical data during the intervening period. This model modifies the SAR data based on the changes observed in optical data to generate the SAR data for the desired timestamp. Our model, a dual conditional Generative Adversarial Network (GAN), named Temporal Shifting GAN (TSGAN), incorporates a siamese encoder in both the Generator and the Discriminator. To prevent the model from overfitting on the input SAR data, we employed a change weighted loss function. Our approach surpasses traditional translation methods by eliminating the GAN's fiction phenomenon, particularly in unchanged regions, resulting in higher SSIM and PSNR in these areas. Additionally, modifications to the Pix2Pix architecture and the inclusion of attention mechanisms have enhanced the model's performance on all regions of the data. This research paves the way for leveraging legacy optical datasets, the most abundant and longstanding source of Earth imagery data, extending their use to SAR domains and temporal analyses. To foster further research, we provide the code, datasets used in our study, and a framework for generating paired SAR-Optical datasets for new regions of interest. These resources are available on github.com/moienr/TemporalGAN
Abstract:Digital soil mapping (DSM) is an advanced approach that integrates statistical modeling and cutting-edge technologies, including machine learning (ML) methods, to accurately depict soil properties and their spatial distribution. Soil organic carbon (SOC) is a crucial soil attribute providing valuable insights into soil health, nutrient cycling, greenhouse gas emissions, and overall ecosystem productivity. This study highlights the significance of spatial-temporal deep learning (DL) techniques within the DSM framework. A novel architecture is proposed, incorporating spatial information using a base convolutional neural network (CNN) model and spatial attention mechanism, along with climate temporal information using a long short-term memory (LSTM) network, for SOC prediction across Europe. The model utilizes a comprehensive set of environmental features, including Landsat-8 images, topography, remote sensing indices, and climate time series, as input features. Results demonstrate that the proposed framework outperforms conventional ML approaches like random forest commonly used in DSM, yielding lower root mean square error (RMSE). This model is a robust tool for predicting SOC and could be applied to other soil properties, thereby contributing to the advancement of DSM techniques and facilitating land management and decision-making processes based on accurate information.