Abstract:The generation of high-quality images has become widely accessible and is a rapidly evolving process. As a result, anyone can generate images that are indistinguishable from real ones. This leads to a wide range of applications, which also include malicious usage with deception in mind. Despite advances in detection techniques for generated images, a robust detection method still eludes us. In this work, we utilize the inductive bias of convolutional neural networks (CNNs) to develop a new detection method that requires a small amount of training samples and achieves accuracy that is on par or better than current state-of-the-art methods.