Abstract:Candidate generation, the first stage for most computer aided detection (CAD) systems, rapidly scans the entire image data for any possible abnormality locations, while the subsequent stages of the CAD system refine the candidates list to determine the most probable or significant of these candidates. The candidate generator creates a list of the locations and provides a size estimate for each candidate. A multiscale scale-normalized Laplacian of Gaussian (LoG) filtering method for detecting pulmonary nodules in whole-lung CT scans, presented in this paper, achieves a high sensitivity for both solid and nonsolid pulmonary nodules. The pulmonary nodule LoG filtering method was validated on a size-enriched database of 706 whole-lung low-dose CT scans containing 499 solid (>= 4 mm) and 107 nonsolid (>= 6 mm) pulmonary nodules. The method achieved a sensitivity of 0.998 (498/499) for solid nodules and a sensitivity of 1.000 (107/107) for nonsolid nodules. Furthermore, compared to radiologist measurements, the method provided low average nodule size estimation error of 0.12 mm for solid and 1.27 mm for nonsolid nodules. The average distance between automatically and manually determined nodule centroids were 1.41 mm and 1.43 mm, respectively.
Abstract:A novel hierarchical model is introduced to solve a general problem of detecting groups of similar objects. Under this model, detection of groups is performed in hierarchically organized layers while each layer represents a scope for target objects. The processing of these layers involves sequential extraction of appearance features for an individual object, consistency measurement features for nearby objects, and finally the distribution features for all objects within the group. Using the concept of scope-based normalization, the extracted features not only enhance local contrast of an individual object, but also provide consistent characterization for all related objects. As an example, a microcalcification group detection system for 2D mammography was developed, and then the learned model was transferred to 3D digital breast tomosynthesis without any retraining or fine-tuning. The detection system demonstrated state-of-the-art performance and detected 96% of cancerous lesions at the rate of 1.2 false positives per volume as measured on an independent tomosynthesis test set.