Abstract:As a highly expressive generative model, diffusion models have demonstrated exceptional success across various domains, including image generation, natural language processing, and combinatorial optimization. However, as data distributions grow more complex, training these models to convergence becomes increasingly computationally intensive. While diffusion models are typically trained using uniform timestep sampling, our research shows that the variance in stochastic gradients varies significantly across timesteps, with high-variance timesteps becoming bottlenecks that hinder faster convergence. To address this issue, we introduce a non-uniform timestep sampling method that prioritizes these more critical timesteps. Our method tracks the impact of gradient updates on the objective for each timestep, adaptively selecting those most likely to minimize the objective effectively. Experimental results demonstrate that this approach not only accelerates the training process, but also leads to improved performance at convergence. Furthermore, our method shows robust performance across various datasets, scheduling strategies, and diffusion architectures, outperforming previously proposed timestep sampling and weighting heuristics that lack this degree of robustness.
Abstract:In offline imitation learning (IL), we generally assume only a handful of expert trajectories and a supplementary offline dataset from suboptimal behaviors to learn the expert policy. While it is now common to minimize the divergence between state-action visitation distributions so that the agent also considers the future consequences of an action, a sampling error in an offline dataset may lead to erroneous estimates of state-action visitations in the offline case. In this paper, we investigate the effect of controlling the effective planning horizon (i.e., reducing the discount factor) as opposed to imposing an explicit regularizer, as previously studied. Unfortunately, it turns out that the existing algorithms suffer from magnified approximation errors when the effective planning horizon is shortened, which results in a significant degradation in performance. We analyze the main cause of the problem and provide the right remedies to correct the algorithm. We show that the corrected algorithm improves on popular imitation learning benchmarks by controlling the effective planning horizon rather than an explicit regularization.