Abstract:Knowledge graphs have proven successful in integrating heterogeneous data across various domains. However, there remains a noticeable dearth of research on their seamless integration among heterogeneous recommender systems, despite knowledge graph-based recommender systems garnering extensive research attention. This study aims to fill this gap by proposing RecKG, a standardized knowledge graph for recommender systems. RecKG ensures the consistent representation of entities across different datasets, accommodating diverse attribute types for effective data integration. Through a meticulous examination of various recommender system datasets, we select attributes for RecKG, ensuring standardized formatting through consistent naming conventions. By these characteristics, RecKG can seamlessly integrate heterogeneous data sources, enabling the discovery of additional semantic information within the integrated knowledge graph. We apply RecKG to standardize real-world datasets, subsequently developing an application for RecKG using a graph database. Finally, we validate RecKG's achievement in interoperability through a qualitative evaluation between RecKG and other studies.
Abstract:The use of knowledge graphs in recommender systems has become one of the common approaches to addressing data sparsity and cold start problems. Recent advances in large language models (LLMs) offer new possibilities for processing side and context information within knowledge graphs. However, consistent integration across various systems remains challenging due to the need for domain expert intervention and differences in system characteristics. To address these issues, we propose a consistent approach that extracts both general and specific topics from both side and context information using LLMs. First, general topics are iteratively extracted and updated from side information. Then, specific topics are extracted using context information. Finally, to address synonymous topics generated during the specific topic extraction process, a refining algorithm processes and resolves these issues effectively. This approach allows general topics to capture broad knowledge across diverse item characteristics, while specific topics emphasize detailed attributes, providing a more comprehensive understanding of the semantic features of items and the preferences of users. Experimental results demonstrate significant improvements in recommendation performance across diverse knowledge graphs.
Abstract:Precise measurements from sensors are crucial, but data is usually collected from low-cost, low-tech systems, which are often inaccurate. Thus, they require further calibrations. To that end, we first identify three requirements for effective calibration under practical low-tech sensor conditions. Based on the requirements, we develop a model called TESLA, Transformer for effective sensor calibration utilizing logarithmic-binned attention. TESLA uses a high-performance deep learning model, Transformers, to calibrate and capture non-linear components. At its core, it employs logarithmic binning to minimize attention complexity. TESLA achieves consistent real-time calibration, even with longer sequences and finer-grained time series in hardware-constrained systems. Experiments show that TESLA outperforms existing novel deep learning and newly crafted linear models in accuracy, calibration speed, and energy efficiency.