Abstract:Smart traffic lights in intelligent transportation systems (ITSs) are envisioned to greatly increase traffic efficiency and reduce congestion. Deep reinforcement learning (DRL) is a promising approach to adaptively control traffic lights based on the real-time traffic situation in a road network. However, conventional methods may suffer from poor scalability. In this paper, we investigate deep reinforcement learning to control traffic lights, and both theoretical analysis and numerical experiments show that the intelligent behavior ``greenwave" (i.e., a vehicle will see a progressive cascade of green lights, and not have to brake at any intersection) emerges naturally a grid road network, which is proved to be the optimal policy in an avenue with multiple cross streets. As a first step, we use two DRL algorithms for the traffic light control problems in two scenarios. In a single road intersection, we verify that the deep Q-network (DQN) algorithm delivers a thresholding policy; and in a grid road network, we adopt the deep deterministic policy gradient (DDPG) algorithm. Secondly, numerical experiments show that the DQN algorithm delivers the optimal control, and the DDPG algorithm with passive observations has the capability to produce on its own a high-level intelligent behavior in a grid road network, namely, the ``greenwave" policy emerges. We also verify the ``greenwave" patterns in a $5 \times 10$ grid road network. Thirdly, the ``greenwave" patterns demonstrate that DRL algorithms produce favorable solutions since the ``greenwave" policy shown in experiment results is proved to be optimal in a specified traffic model (an avenue with multiple cross streets). The delivered policies both in a single road intersection and a grid road network demonstrate the scalability of DRL algorithms.
Abstract:Intelligent Transportation Systems (ITSs) are envisioned to play a critical role in improving traffic flow and reducing congestion, which is a pervasive issue impacting urban areas around the globe. Rapidly advancing vehicular communication and edge cloud computation technologies provide key enablers for smart traffic management. However, operating viable real-time actuation mechanisms on a practically relevant scale involves formidable challenges, e.g., policy iteration and conventional Reinforcement Learning (RL) techniques suffer from poor scalability due to state space explosion. Motivated by these issues, we explore the potential for Deep Q-Networks (DQN) to optimize traffic light control policies. As an initial benchmark, we establish that the DQN algorithms yield the "thresholding" policy in a single-intersection. Next, we examine the scalability properties of DQN algorithms and their performance in a linear network topology with several intersections along a main artery. We demonstrate that DQN algorithms produce intelligent behavior, such as the emergence of "greenwave" patterns, reflecting their ability to learn favorable traffic light actuations.