Abstract:We describe the University of Alberta systems for the SemEval-2022 Task 2 on multilingual idiomaticity detection. Working under the assumption that idiomatic expressions are noncompositional, our first method integrates information on the meanings of the individual words of an expression into a binary classifier. Further hypothesizing that literal and idiomatic expressions translate differently, our second method translates an expression in context, and uses a lexical knowledge base to determine if the translation is literal. Our approaches are grounded in linguistic phenomena, and leverage existing sources of lexical knowledge. Our results offer support for both approaches, particularly the former.