Abstract:Human trafficking is a crime that affects the lives of millions of people across the globe. Traffickers exploit the victims through forced labor, involuntary sex, or organ harvesting. Migrant smuggling could also be seen as a form of human trafficking when the migrant fails to pay the smuggler and is forced into coerced activities. Several news agencies and anti-trafficking organizations have reported trafficking survivor stories that include the names of locations visited along the trafficking route. Identifying such routes can provide knowledge that is essential to preventing such heinous crimes. In this paper we propose a Narrative to Trajectory (N2T) information extraction system that analyzes reported narratives, extracts relevant information through the use of Natural Language Processing (NLP) techniques, and applies geospatial augmentation in order to automatically plot trajectories of human trafficking routes. We evaluate N2T on human trafficking text corpora and demonstrate that our approach of utilizing data preprocessing and augmenting database techniques with NLP libraries outperforms existing geolocation detection methods.
Abstract:Climate change and political unrest in certain regions of the world are imposing extreme hardship on many communities and are forcing millions of vulnerable populations to abandon their homelands and seek refuge in safer lands. As international laws are not fully set to deal with the migration crisis, people are relying on networks of exploiting smugglers to escape the devastation in order to live in stability. During the smuggling journey, migrants can become victims of human trafficking if they fail to pay the smuggler and may be forced into coerced labor. Government agencies and anti-trafficking organizations try to identify the trafficking routes based on stories of survivors in order to gain knowledge and help prevent such crimes. In this paper, we propose a system called Narrative to Trajectory (N2T+), which extracts trajectories of trafficking routes. N2T+ uses Data Science and Natural Language Processing techniques to analyze trafficking narratives, automatically extract relevant location names, disambiguate possible name ambiguities, and plot the trafficking route on a map. In a comparative evaluation we show that the proposed multi-dimensional approach offers significantly higher geolocation detection than other state of the art techniques.