Abstract:Recently, counterfactuals using "if-only" explanations have become very popular in eXplainable AI (XAI), as they describe which changes to feature-inputs of a black-box AI system result in changes to a (usually negative) decision-outcome. Even more recently, semi-factuals using "even-if" explanations have gained more attention. They elucidate the feature-input changes that do \textit{not} change the decision-outcome of the AI system, with a potential to suggest more beneficial recourses. Some semi-factual methods use counterfactuals to the query-instance to guide semi-factual production (so-called counterfactual-guided methods), whereas others do not (so-called counterfactual-free methods). In this work, we perform comprehensive tests of 8 semi-factual methods on 7 datasets using 5 key metrics, to determine whether counterfactual guidance is necessary to find the best semi-factuals. The results of these tests suggests not, but rather that computing other aspects of the decision space lead to better semi-factual XAI.
Abstract:Recently, eXplainable AI (XAI) research has focused on counterfactual explanations as post-hoc justifications for AI-system decisions (e.g. a customer refused a loan might be told: If you asked for a loan with a shorter term, it would have been approved). Counterfactuals explain what changes to the input-features of an AI system change the output-decision. However, there is a sub-type of counterfactual, semi-factuals, that have received less attention in AI (though the Cognitive Sciences have studied them extensively). This paper surveys these literatures to summarise historical and recent breakthroughs in this area. It defines key desiderata for semi-factual XAI and reports benchmark tests of historical algorithms (along with a novel, naieve method) to provide a solid basis for future algorithmic developments.